Electrolaryngeal Speech Intelligibility Enhancement Through Robust Linguistic Encoders

09/18/2023
by   Lester Phillip Violeta, et al.
0

We propose a novel framework for electrolaryngeal speech intelligibility enhancement through the use of robust linguistic encoders. Pretraining and fine-tuning approaches have proven to work well in this task, but in most cases, various mismatches, such as the speech type mismatch (electrolaryngeal vs. typical) or a speaker mismatch between the datasets used in each stage, can deteriorate the conversion performance of this framework. To resolve this issue, we propose a linguistic encoder robust enough to project both EL and typical speech in the same latent space, while still being able to extract accurate linguistic information, creating a unified representation to reduce the speech type mismatch. Furthermore, we introduce HuBERT output features to the proposed framework for reducing the speaker mismatch, making it possible to effectively use a large-scale parallel dataset during pretraining. We show that compared to the conventional framework using mel-spectrogram input and output features, using the proposed framework enables the model to synthesize more intelligible and naturally sounding speech, as shown by a significant 16 improvement in character error rate and 0.83 improvement in naturalness score.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro