EMAP: A Cloud-Edge Hybrid Framework for EEG Monitoring and Cross-Correlation Based Real-time Anomaly Prediction
State-of-the-art techniques for detecting, or predicting, neurological disorders (1) focus on predicting each disorder individually, and are (2) computationally expensive, leading to a delay that can potentially render the prediction useless, especially in critical events. Towards this, we present a real-time two-tiered framework called EMAP, which cross-correlates the input with all the EEG signals in our mega-database (a combination of multiple EEG datasets) at the cloud, while tracking the signal in real-time at the edge, to predict the occurrence of a neurological anomaly. Using the proposed framework, we have demonstrated a prediction accuracy of up to 94 anomalies that we have tested.
READ FULL TEXT