Enabling Hard Service Guarantees in Software-Defined Smart Grid Infrastructures

10/18/2018
by   Nils Dorsch, et al.
0

Information and Communication Technology (ICT) infrastructures play a key role in the evolution from traditional power systems to Smart Grids. Increasingly fluctuating power flows, sparked by the transition towards sustainable energy generation, become a major issue for power grid stability. To deal with this challenge, future Smart Grids require precise monitoring and control, which in turn demand for reliable, real-time capable and cost-efficient communications. For this purpose, we propose applying Software-Defined Networking (SDN) to handle the manifold requirements of Smart Grid communications. To achieve reliability, our approach encompasses fast recovery after failures in the communication network and dynamic service-aware network (re-)configuration. Network Calculus (NC) logic is embedded into our SDN controller for meeting latency requirements imposed by the standard IEC 61850 of the International Electrotechnical Committee (IEC). Thus, routing provides delay-optimal paths under consideration of existing cross traffic. Also, continuous latency bound compliance is ensured by combining NC delay supervision with means of flexible reconfiguration. For evaluation we consider the well-known Nordic 32 test system, on which we map a corresponding communication network in both experiment and emulation. The described functionalities are validated, employing realistic IEC 61850 transmissions and distributed control traffic. Our results show that hard service guarantees can be ensured with the help of the proposed SDN solution. On this basis, we derive extremely time critical services, which must not be subjected to flexible reconfiguration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset