End-to-end speech recognition modeling from de-identified data

07/12/2022
by   Martin Flechl, et al.
0

De-identification of data used for automatic speech recognition modeling is a critical component in protecting privacy, especially in the medical domain. However, simply removing all personally identifiable information (PII) from end-to-end model training data leads to a significant performance degradation in particular for the recognition of names, dates, locations, and words from similar categories. We propose and evaluate a two-step method for partially recovering this loss. First, PII is identified, and each occurrence is replaced with a random word sequence of the same category. Then, corresponding audio is produced via text-to-speech or by splicing together matching audio fragments extracted from the corpus. These artificial audio/label pairs, together with speaker turns from the original data without PII, are used to train models. We evaluate the performance of this method on in-house data of medical conversations and observe a recovery of almost the entire performance degradation in the general word error rate while still maintaining a strong diarization performance. Our main focus is the improvement of recall and precision in the recognition of PII-related words. Depending on the PII category, between 50% - 90% of the performance degradation can be recovered using our proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro