Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance
The entanglement-assisted (EA) formalism allows arbitrary classical linear codes to transform into entanglement-assisted quantum error correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we propose a decomposition of the defining set of constacyclic codes. Using this method, we construct four classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical constacyclic MDS codes by exploiting less pre-shared maximally entangled states. We show that a class of q-ary EAQMDS have minimum distance upper limit greater than 3q-1. Some of them have much larger minimum distance than the known quantum MDS (QMDS) codes of the same length. Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.
READ FULL TEXT