Entropy-based Characterization of Modeling Constraints

06/27/2022
by   Orestis Loukas, et al.
0

In most data-scientific approaches, the principle of Maximum Entropy (MaxEnt) is used to a posteriori justify some parametric model which has been already chosen based on experience, prior knowledge or computational simplicity. In a perpendicular formulation to conventional model building, we start from the linear system of phenomenological constraints and asymptotically derive the distribution over all viable distributions that satisfy the provided set of constraints. The MaxEnt distribution plays a special role, as it is the most typical among all phenomenologically viable distributions representing a good expansion point for large-N techniques. This enables us to consistently formulate hypothesis testing in a fully-data driven manner. The appropriate parametric model which is supported by the data can be always deduced at the end of model selection. In the MaxEnt framework, we recover major scores and selection procedures used in multiple applications and assess their ability to capture associations in the data-generating process and identify the most generalizable model. This data-driven counterpart of standard model selection demonstrates the unifying prospective of the deductive logic advocated by MaxEnt principle, while potentially shedding new insights to the inverse problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset