Escaping Cannibalization? Correlation-Robust Pricing for a Unit-Demand Buyer

03/12/2020
by   Moshe Babaioff, et al.
0

A single seller wishes to sell n items to a single unit-demand buyer. We consider a robust version of this revenue-maximization pricing problem, where the seller knows the buyer's marginal distributions of values for each item, but not the joint distribution, and wishes to maximize worst-case revenue over all possible correlation structures. We devise a computationally efficient (polynomial in the support size of the marginals) algorithm that computes the worst-case joint distribution for any choice of item prices. And yet, in sharp contrast to the additive buyer case (Carroll, 2017), we show that it is NP-hard to approximate the optimal choice of prices to within any factor better than n^1/2-ϵ. For the special case of marginal distributions that satisfy the monotone hazard rate property, we show how to guarantee a constant fraction of the optimal worst-case revenue using item pricing; this pricing equates revenue across all possible correlations and can be computed efficiently.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro