Estimating adaptive cruise control model parameters from on-board radar units

11/15/2019
by   Yanbing Wang, et al.
0

Two new methods are presented for estimating car-following model parameters using data collected from the Adaptive Cruise Control (ACC) enabled vehicles. The vehicle is assumed to follow a constant time headway relative velocity model in which the parameters are unknown and to be determined. The first technique is a batch method that uses a least-squares approach to estimate the parameters from time series data of the vehicle speed, space gap, and relative velocity of a lead vehicle. The second method is an online approach that uses a particle filter to simultaneously estimate both the state of the system and the model parameters. Numerical experiments demonstrate the accuracy and computational performance of the methods relative to a commonly used simulation-based optimization approach. The methods are also assessed on empirical data collected from a 2019 model year ACC vehicle driven in a highway environment. Speed, space gap, and relative velocity data are recorded directly from the factory-installed radar unit via the vehicle's CAN bus. All three methods return similar mean absolute error values in speed and spacing compared to the recorded data. The least-squares method has the fastest run-time performance, and is up to 3 orders of magnitude faster than other methods. The particle filter is faster than real-time, and therefore is suitable in streaming applications in which the datasets can grow arbitrarily large.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset