Evidence bounds in singular models: probabilistic and variational perspectives
The marginal likelihood or evidence in Bayesian statistics contains an intrinsic penalty for larger model sizes and is a fundamental quantity in Bayesian model comparison. Over the past two decades, there has been steadily increasing activity to understand the nature of this penalty in singular statistical models, building on pioneering work by Sumio Watanabe. Unlike regular models where the Bayesian information criterion (BIC) encapsulates a first-order expansion of the logarithm of the marginal likelihood, parameter counting gets trickier in singular models where a quantity called the real log canonical threshold (RLCT) summarizes the effective model dimensionality. In this article, we offer a probabilistic treatment to recover non-asymptotic versions of established evidence bounds as well as prove a new result based on the Gibbs variational inequality. In particular, we show that mean-field variational inference correctly recovers the RLCT for any singular model in its canonical or normal form. We additionally exhibit sharpness of our bound by analyzing the dynamics of a general purpose coordinate ascent algorithm (CAVI) popularly employed in variational inference.
READ FULL TEXT