Exact Algorithms for Finding Well-Connected 2-Clubs in Real-World Graphs: Theory and Experiments

07/19/2018
by   Christian Komusiewicz, et al.
0

Finding (maximum-cardinality) "cliquish" subgraphs is a central topic in graph mining and community detection. A popular clique relaxation are 2-clubs: instead of asking for subgraphs of diameter one (these are cliques), one asks for subgraphs of diameter two (these are 2-clubs). A drawback of the 2-club model is that it produces hub-and-spoke structures (typically star-like) as maximum-cardinality solutions. Hence, we study 2-clubs with the additional constraint to be well-connected. More specifically, we investigate the algorithmic complexity for three variants of well-connected 2-clubs, all established in the literature: robust, hereditary, and "connected" 2-clubs. Finding these more dense 2-clubs is NP-hard; nevertheless, we develop an exact combinatorial algorithm, extensively using efficient data reduction rules. Besides several theoretical insights we provide a number of empirical results based on an engineered implementation of our exact algorithm. In particular, the algorithm significantly outperforms existing algorithms on almost all (large) real-world graphs we considered.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro