Exactly Hittable Interval Graphs

01/01/2023
by   S. M. Dhannya, et al.
0

Given a set system 𝒳 = {𝒰,𝒮}, where 𝒰 is a set of elements and 𝒮 is a set of subsets of 𝒰, an exact hitting set 𝒰' is a subset of 𝒰 such that each subset in 𝒮 contains exactly one element in 𝒰'. We refer to a set system as exactly hittable if it has an exact hitting set. In this paper, we study interval graphs which have intersection models that are exactly hittable. We refer to these interval graphs as exactly hittable interval graphs (EHIG). We present a forbidden structure characterization for EHIG. We also show that the class of proper interval graphs is a strict subclass of EHIG. Finally, we give an algorithm that runs in polynomial time to recognize graphs belonging to the class of EHIG.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset