Exclusive Topic Modeling

02/06/2021
by   Hao Lei, et al.
0

We propose an Exclusive Topic Modeling (ETM) for unsupervised text classification, which is able to 1) identify the field-specific keywords though less frequently appeared and 2) deliver well-structured topics with exclusive words. In particular, a weighted Lasso penalty is imposed to reduce the dominance of the frequently appearing yet less relevant words automatically, and a pairwise Kullback-Leibler divergence penalty is used to implement topics separation. Simulation studies demonstrate that the ETM detects the field-specific keywords, while LDA fails. When applying to the benchmark NIPS dataset, the topic coherence score on average improves by 22 model with weighted Lasso penalty and pairwise Kullback-Leibler divergence penalty, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro