Exponential integrators for large-scale stiff matrix Riccati differential equations

07/30/2019
by   Dongping Li, et al.
0

Matrix Riccati differential equations arise in many different areas and are particular important within the field of control theory. In this paper we consider numerical integration for large-scale systems of stiff matrix Riccati differential equations. We show how to apply exponential Rosenbrock-type integrators to get approximate solutions. Two typical exponential integration schemes are considered. The implementation issues are addressed and some low-rank approximations are exploited based on high quality numerical algebra codes. Numerical comparisons demonstrate that the exponential integrators can obtain high accuracy and efficiency for solving large-scale systems of stiff matrix Riccati differential equations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro