Extending the centerpoint theorem to multiple points

10/24/2018
by   Alexander Pilz, et al.
0

The centerpoint theorem is a well-known and widely used result in discrete geometry. It states that for any point set P of n points in R^d, there is a point c, not necessarily from P, such that each halfspace containing c contains at least n/d+1 points of P. Such a point c is called a centerpoint, and it can be viewed as a generalization of a median to higher dimensions. In other words, a centerpoint can be interpreted as a good representative for the point set P. But what if we allow more than one representative? For example in one-dimensional data sets, often certain quantiles are chosen as representatives instead of the median. We present a possible extension of the concept of quantiles to higher dimensions. The idea is to find a set Q of (few) points such that every halfspace that contains one point of Q contains a large fraction of the points of P and every halfspace that contains more of Q contains an even larger fraction of P. This setting is comparable to the well-studied concepts of weak ε-nets and weak ε-approximations, where it is stronger than the former but weaker than the latter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro