Extension of Three-Variable Counterfactual Casual Graphic Model: from Two-Value to Three-Value Random Variable

06/28/2012
by   Jingwei Liu, et al.
0

The extension of counterfactual causal graphic model with three variables of vertex set in directed acyclic graph (DAG) is discussed in this paper by extending two- value distribution to three-value distribution of the variables involved in DAG. Using the conditional independence as ancillary information, 6 kinds of extension counterfactual causal graphic models with some variables are extended from two-value distribution to three-value distribution and the sufficient conditions of identifiability are derived.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro