Extensional proofs in a propositional logic modulo isomorphisms

02/10/2020
by   Alejandro Díaz-Caro, et al.
0

System I is a proof language for a fragment of propositional logic where isomorphic propositions, such as A∧ B and B∧ A, or A(B∧ C) and (A B)∧(A C) are made equal. System I enjoys the strong normalization property. This is sufficient to prove the existence of empty types, but not to prove the introduction property (every normal closed term is an introduction). Moreover, a severe restriction had to be made on the types of the variables in order to obtain the existence of empty types. We show here that adding η-expansion rules to System I permit to drop this restriction and to retrieve full introduction property.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro