Facets of Distribution Identities in Probabilistic Team Semantics
We study probabilistic team semantics which is a semantical framework allowing the study of logical and probabilistic dependencies simultaneously. We examine and classify the expressive power of logical formalisms arising by different probabilistic atoms such as conditional independence and different variants of marginal distribution equivalences. We also relate the framework to the first-order theory of the reals and apply our methods to the open question on the complexity of the implication problem of conditional independence.
READ FULL TEXT