Fast and Accurate Span-based Semantic Role Labeling as Graph Parsing

12/06/2021
by   Shilin Zhou, et al.
0

Currently, BIO-based and tuple-based approaches perform quite well on the span-based semantic role labeling (SRL) task. However, the BIO-based approach usually needs to encode a sentence once for each predicate when predicting its arguments, and the tuple-based approach has to deal with a huge search space of O(n^3), greatly reducing the training and inference efficiency. The parsing speed is less than 50 sentences per second. Moreover, both BIO-based and tuple-based approaches usually consider only local structural information when making predictions. This paper proposes to cast end-to-end span-based SRL as a graph parsing task. Based on a novel graph representation schema, we present a fast and accurate SRL parser on the shoulder of recent works on high-order semantic dependency graph parsing. Moreover, we propose a constrained Viterbi procedure to ensure the legality of the output graph. Experiments on English CoNLL05 and CoNLL12 datasets show that our model achieves new state-of-the-art results under both settings of without and with pre-trained language models, and can parse over 600 sentences per second.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro