Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm

07/07/2019
by   Andrew Redd, et al.
0

Due to their prevalence, time series forecasting is crucial in multiple domains. We seek to make state-of-the-art forecasting fast, accessible, and generalizable. ES-RNN is a hybrid between classical state space forecasting models and modern RNNs that achieved a 9.4 competition. Crucially, ES-RNN implementation requires per-time series parameters. By vectorizing the original implementation and porting the algorithm to a GPU, we achieve up to 322x training speedup depending on batch size with similar results as those reported in the original submission. Our code can be found at: https://github.com/damitkwr/ESRNN-GPU

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset