Fast Eye Detector Using Metric Learning for Iris on The Move

02/22/2022
by   Yuka Ogino, et al.
0

This paper proposes a fast eye detection method based on fully-convolutional Siamese networks for iris recognition. The iris on the move system requires to capture high resolution iris images from a moving subject for iris recognition. Therefore, capturing images contains both eyes at high-frame-rate increases the chance of iris imaging. In order to output the authentication result in real time, the system requires a fast eye detector extracting the left and right eye regions from the image. Our method extracts features of a partial face image and a reference eye image using Siamese network frameworks. Similarity heat maps of both eyes are created by calculating the spatial cosine similarity between extracted features. Besides, we use CosFace as a loss function for training to discriminate the left and right eyes with high accuracy even with a shallow network. Experimental results show that our method trained by CosFace is fast and accurate compared with conventional generic object detection methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset