Fast multigrid reduction-in-time for advection via modified semi-Lagrangian coarse-grid operators

03/24/2022
by   H. De Sterck, et al.
0

Many iterative parallel-in-time algorithms have been shown to be highly efficient for diffusion-dominated partial differential equations (PDEs), but are inefficient or even divergent when applied to advection-dominated PDEs. We consider the application of the multigrid reduction-in-time (MGRIT) algorithm to linear advection PDEs. The key to efficient time integration with this method is using a coarse-grid operator that provides a sufficiently accurate approximation to the the so-called ideal coarse-grid operator. For certain classes of semi-Lagrangian discretizations, we present a novel semi-Lagrangian-based coarse-grid operator that leads to fast and scalable multilevel time integration of linear advection PDEs. The coarse-grid operator is composed of a semi-Lagrangian discretization followed by a correction term, with the correction designed so that the leading-order truncation error of the composite operator is approximately equal to that of the ideal coarse-grid operator. Parallel results show substantial speed-ups over sequential time integration for variable-wave-speed advection problems in one and two spatial dimensions, and using high-order discretizations up to order five. The proposed approach establishes the first practical method that provides small and scalable MGRIT iteration counts for advection problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset