Fast Robust Methods for Singular State-Space Models

03/07/2018
by   Jonathan Jonker, et al.
0

State-space models are used in a wide range of time series analysis formulations. Kalman filtering and smoothing are work-horse algorithms in these settings. While classic algorithms assume Gaussian errors to simplify estimation, recent advances use a broader range of optimization formulations to allow outlier-robust estimation, as well as constraints to capture prior information. Here we develop methods on state-space models where either innovations or error covariances may be singular. These models frequently arise in navigation (e.g. for `colored noise' models or deterministic integrals) and are ubiquitous in auto-correlated time series models such as ARMA. We reformulate all state-space models (singular as well as nonsinguar) as constrained convex optimization problems, and develop an efficient algorithm for this reformulation. The convergence rate is locally linear, with constants that do not depend on the conditioning of the problem. Numerical comparisons show that the new approach outperforms competing approaches for nonsingular models, including state of the art interior point (IP) methods. IP methods converge at superlinear rates; we expect them to dominate. However, the steep rate of the proposed approach (independent of problem conditioning) combined with cheap iterations wins against IP in a run-time comparison. We therefore suggest that the proposed approach be the default choice for estimating state space models outside of the Gaussian context, regardless of whether the error covariances are singular or not.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset