# Faster Algorithms for Integer Programs with Block Structure

We consider integer programming problems { c^T x : A x = b, l ≤ x ≤ u, x ∈Z^nt} where A has a (recursive) block-structure generalizing "n-fold integer programs" which recently received considerable attention in the literature. An n-fold IP is an integer program where A consists of n repetitions of submatrices A ∈Z^r × t on the top horizontal part and n repetitions of a matrix B ∈Z^s × t on the diagonal below the top part. Instead of allowing only two types of block matrices, one for the horizontal line and one for the diagonal, we generalize the n-fold setting to allow for arbitrary matrices in every block. We show that such an integer program can be solved in time n^2 t^2 ϕ· (rsΔ)^O(rs^2+ sr^2) (ignoring logarithmic factors). Here Δ is an upper bound on the largest absolute value of an entry of A and ϕ is the largest binary encoding length of a coefficient of c. This improves upon the previously best algorithm of Hemmecke, Onn and Romanchuk that runs in time n^3t^3 ϕ·Δ^O(t^2s). In particular, our algorithm is not exponential in the number t of columns of A and B. Our algorithm is based on a new upper bound on the l_1-norm of an element of the "Graver basis" of an integer matrix and on a proximity bound between the LP and IP optimal solutions tailored for IPs with block structure. These new bounds rely on the "Steinitz Lemma". Furthermore, we extend our techniques to the recently introduced "tree-fold IPs", where we again present a more efficient algorithm in a generalized setting.

• 10 publications
• 6 publications
• 11 publications
research
05/09/2018

### On the Graver basis of block-structured integer programming

We consider the 4-block n-fold integer programming (IP), in which the co...
research
02/18/2020

### N-fold integer programming via LP rounding

We consider N-fold integer programming problems. After a decade of conti...
research
02/16/2018

### A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs

The theory of n-fold integer programming has been recently emerging as a...
research
03/07/2022

### Exponentially faster fixed-parameter algorithms for high-multiplicity scheduling

We consider so-called N-fold integer programs (IPs) of the form max{c^T ...
research
01/04/2019

### About the Complexity of Two-Stage Stochastic IPs

We consider so called 2-stage stochastic integer programs (IPs) and thei...
research
11/02/2018

### Near-Linear Time Algorithm for n-fold ILPs via Color Coding

We study an important case of ILPs {c^Tx Ax = b, l ≤ x ≤ u, x ∈Z^n t...
research
02/25/2018

### Evaluating and Tuning n-fold Integer Programming

In recent years, algorithmic breakthroughs in stringology, computational...