Faster Decomposition of Weighted Graphs into Cliques using Fisher's Inequality

06/15/2022
by   Shweta Jain, et al.
0

Mining groups of genes that consistently co-express is an important problem in biomedical research, where it is critical for applications such as drug-repositioning and designing new disease treatments. Recently, Cooley et al. modeled this problem as Exact Weighted Clique Decomposition (EWCD) in which, given an edge-weighted graph G and a positive integer k, the goal is to decompose G into at most k (overlapping) weighted cliques so that an edge's weight is exactly equal to the sum of weights for cliques it participates in. They show EWCD is fixed-parameter-tractable, giving a 4^k-kernel alongside a backtracking algorithm (together called cricca) to iteratively build a decomposition. Unfortunately, because of inherent exponential growth in the space of potential solutions, cricca is typically able to decompose graphs only when k ≤ 11. In this work, we establish reduction rules that exponentially decrease the size of the kernel (from 4^k to k2^k) for EWCD. In addition, we use insights about the structure of potential solutions to give new search rules that speed up the decomposition algorithm. At the core of our techniques is a result from combinatorial design theory called Fisher's inequality characterizing set systems with restricted intersections. We deploy our kernelization and decomposition algorithms (together called DeCAF) on a corpus of biologically-inspired data and obtain over two orders of magnitude speed-up over cricca. As a result, DeCAF scales to instances with k ≥ 17.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/18/2020

Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

We develop an FPT algorithm and a kernel for the Weighted Edge Clique Pa...
research
02/01/2023

Improved Exact and Heuristic Algorithms for Maximum Weight Clique

We propose improved exact and heuristic algorithms for solving the maxim...
research
06/01/2021

Parameterized algorithms for identifying gene co-expression modules via weighted clique decomposition

We present a new combinatorial model for identifying regulatory modules ...
research
08/12/2020

Boosting Data Reduction for the Maximum Weight Independent Set Problem Using Increasing Transformations

Given a vertex-weighted graph, the maximum weight independent set proble...
research
07/06/2021

On the Hardness of Compressing Weights

We investigate computational problems involving large weights through th...
research
08/11/2017

Combinatorial Optimization by Decomposition on Hybrid CPU--non-CPU Solver Architectures

The advent of new special-purpose hardware such as FPGA or ASIC-based an...

Please sign up or login with your details

Forgot password? Click here to reset