Feature Map Pooling for Cross-View Gait Recognition Based on Silhouette Sequence Images

11/26/2017
by   Qiang Chen, et al.
0

In this paper, we develop a novel convolutional neural network based approach to extract and aggregate useful information from gait silhouette sequence images instead of simply representing the gait process by averaging silhouette images. The network takes a pair of arbitrary length sequence images as inputs and extracts features for each silhouette independently. Then a feature map pooling strategy is adopted to aggregate sequence features. Subsequently, a network which is similar to Siamese network is designed to perform recognition. The proposed network is simple and easy to implement and can be trained in an end-to-end manner. Cross-view gait recognition experiments are conducted on OU-ISIR large population dataset. The results demonstrate that our network can extract and aggregate features from silhouette sequence effectively. It also achieves significant equal error rates and comparable identification rates when compared with the state of the art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset