Feature selection in weakly coherent matrices

04/03/2018
by   Stéphane Chrétien, et al.
0

A problem of paramount importance in both pure (Restricted Invertibility problem) and applied mathematics (Feature extraction) is the one of selecting a submatrix of a given matrix, such that this submatrix has its smallest singular value above a specified level. Such problems can be addressed using perturbation analysis. In this paper, we propose a perturbation bound for the smallest singular value of a given matrix after appending a column, under the assumption that its initial coherence is not large, and we use this bound to derive a fast algorithm for feature extraction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro