Few-shot Detection of Anomalies in Industrial Cyber-Physical System via Prototypical Network and Contrastive Learning
The rapid development of Industry 4.0 has amplified the scope and destructiveness of industrial Cyber-Physical System (CPS) by network attacks. Anomaly detection techniques are employed to identify these attacks and guarantee the normal operation of industrial CPS. However, it is still a challenging problem to cope with scenarios with few labeled samples. In this paper, we propose a few-shot anomaly detection model (FSL-PN) based on prototypical network and contrastive learning for identifying anomalies with limited labeled data from industrial CPS. Specifically, we design a contrastive loss to assist the training process of the feature extractor and learn more fine-grained features to improve the discriminative performance. Subsequently, to tackle the overfitting issue during classifying, we construct a robust cost function with a specific regularizer to enhance the generalization capability. Experimental results based on two public imbalanced datasets with few-shot settings show that the FSL-PN model can significantly improve F1 score and reduce false alarm rate (FAR) for identifying anomalous signals to guarantee the security of industrial CPS.
READ FULL TEXT