Few-Shot Learning with Embedded Class Models and Shot-Free Meta Training

05/10/2019
by   Avinash Ravichandran, et al.
6

We propose a method for learning embeddings for few-shot learning that is suitable for use with any number of ways and any number of shots (shot-free). Rather than fixing the class prototypes to be the Euclidean average of sample embeddings, we allow them to live in a higher-dimensional space (embedded class models) and learn the prototypes along with the model parameters. The class representation function is defined implicitly, which allows us to deal with a variable number of shots per each class with a simple constant-size architecture. The class embedding encompasses metric learning, that facilitates adding new classes without crowding the class representation space. Despite being general and not tuned to the benchmark, our approach achieves state-of-the-art performance on the standard few-shot benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset