Finding Relevant Points for Nearest-Neighbor Classification

10/12/2021
by   David Eppstein, et al.
0

In nearest-neighbor classification problems, a set of d-dimensional training points are given, each with a known classification, and are used to infer unknown classifications of other points by using the same classification as the nearest training point. A training point is relevant if its omission from the training set would change the outcome of some of these inferences. We provide a simple algorithm for thinning a training set down to its subset of relevant points, using as subroutines algorithms for finding the minimum spanning tree of a set of points and for finding the extreme points (convex hull vertices) of a set of points. The time bounds for our algorithm, in any constant dimension d≥ 3, improve on a previous algorithm for the same problem by Clarkson (FOCS 1994).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro