Finding roots of complex analytic functions via generalized colleague matrices

07/26/2023
by   Hanwen Zhang, et al.
0

We present a scheme for finding all roots of an analytic function in a square domain in the complex plane. The scheme can be viewed as a generalization of the classical approach to finding roots of a function on the real line, by first approximating it by a polynomial in the Chebyshev basis, followed by diagonalizing the so-called ”colleague matrices”. Our extension of the classical approach is based on several observations that enable the construction of polynomial bases in compact domains that satisfy three-term recurrences and are reasonably well-conditioned. This class of polynomial bases gives rise to ”generalized colleague matrices”, whose eigenvalues are roots of functions expressed in these bases. In this paper, we also introduce a special-purpose QR algorithm for finding the eigenvalues of generalized colleague matrices, which is a straightforward extension of the recently introduced componentwise stable QR algorithm for the classical cases (See [Serkh]). The performance of the schemes is illustrated with several numerical examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro