Finite-Sample Analysis for SARSA and Q-Learning with Linear Function Approximation
Though the convergence of major reinforcement learning algorithms has been extensively studied, the finite-sample analysis to further characterize the convergence rate in terms of the sample complexity for problems with continuous state space is still very limited. Such a type of analysis is especially challenging for algorithms with dynamically changing learning policies and under non-i.i.d. sampled data. In this paper, we present the first finite-sample analysis for the SARSA algorithm and its minimax variant (for zero-sum Markov games), with a single sample path and linear function approximation. To establish our results, we develop a novel technique to bound the gradient bias for dynamically changing learning policies, which can be of independent interest. We further provide finite-sample bounds for Q-learning and its minimax variant. Comparison of our result with the existing finite-sample bound indicates that linear function approximation achieves order-level lower sample complexity than the nearest neighbor approach.
READ FULL TEXT