Finite Sample Analysis of Minimax Offline Reinforcement Learning: Completeness, Fast Rates and First-Order Efficiency

02/05/2021
by   Masatoshi Uehara, et al.
2

We offer a theoretical characterization of off-policy evaluation (OPE) in reinforcement learning using function approximation for marginal importance weights and q-functions when these are estimated using recent minimax methods. Under various combinations of realizability and completeness assumptions, we show that the minimax approach enables us to achieve a fast rate of convergence for weights and quality functions, characterized by the critical inequality <cit.>. Based on this result, we analyze convergence rates for OPE. In particular, we introduce novel alternative completeness conditions under which OPE is feasible and we present the first finite-sample result with first-order efficiency in non-tabular environments, i.e., having the minimal coefficient in the leading term.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro