Fisher Kernel for Deep Neural Activations

12/04/2014
by   Donggeun Yoo, et al.
0

Compared to image representation based on low-level local descriptors, deep neural activations of Convolutional Neural Networks (CNNs) are richer in mid-level representation, but poorer in geometric invariance properties. In this paper, we present a straightforward framework for better image representation by combining the two approaches. To take advantages of both representations, we propose an efficient method to extract a fair amount of multi-scale dense local activations from a pre-trained CNN. We then aggregate the activations by Fisher kernel framework, which has been modified with a simple scale-wise normalization essential to make it suitable for CNN activations. Replacing the direct use of a single activation vector with our representation demonstrates significant performance improvements: +17.76 (Acc.) on MIT Indoor 67 and +7.18 (mAP) on PASCAL VOC 2007. The results suggest that our proposal can be used as a primary image representation for better performances in visual recognition tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro