Flat modal fixpoint logics with the converse modality

10/12/2017
by   Sebastian Enqvist, et al.
0

We prove a generic completeness result for a class of modal fixpoint logics corresponding to flat fragments of the two-way mu-calculus, extending earlier work by Santocanale and Venema. We observe that Santocanale and Venema's proof that least fixpoints in the Lindenbaum-Tarski algebra of certain flat fixpoint logics are constructive, using finitary adjoints, no longer works when the converse modality is introduced. Instead, our completeness proof directly constructs a model for a consistent formula, using the induction rule in a way that is similar to the standard completeness proof for propositional dynamic logic. This approach is combined with the concept of a focus, which has previously been used in tableau based reasoning for modal fixpoint logics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro