FLEX: Unifying Evaluation for Few-Shot NLP

07/15/2021
by   Jonathan Bragg, et al.
15

Few-shot NLP research is highly active, yet conducted in disjoint research threads with evaluation suites that lack challenging-yet-realistic testing setups and fail to employ careful experimental design. Consequently, the community does not know which techniques perform best or even if they outperform simple baselines. We formulate desiderata for an ideal few-shot NLP benchmark and present FLEX, the first benchmark, public leaderboard, and framework that provides unified, comprehensive measurement for few-shot NLP techniques. FLEX incorporates and introduces new best practices for few-shot evaluation, including measurement of four transfer settings, textual labels for zero-shot evaluation, and a principled approach to benchmark design that optimizes statistical accuracy while keeping evaluation costs accessible to researchers without large compute resources. In addition, we present UniFew, a simple yet strong prompt-based model for few-shot learning which unifies the pretraining and finetuning prompt formats, eschewing complex machinery of recent prompt-based approaches in adapting downstream task formats to language model pretraining objectives. We demonstrate that despite simplicity UniFew achieves results competitive with both popular meta-learning and prompt-based approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset