FoldingNet: Interpretable Unsupervised Learning on 3D Point Clouds

12/19/2017
by   Yaoqing Yang, et al.
0

Recent deep networks that directly handle points in a point set, e.g., PointNet, have been state-of-the-art for supervised semantic learning tasks on point clouds such as classification and segmentation. In this work, a novel end-to-end deep auto-encoder is proposed to address unsupervised learning challenges on point clouds. On the encoder side, a graph-based enhancement is enforced to promote local structures on top of PointNet. Then, a novel folding-based approach is proposed in the decoder, which folds a 2D grid onto the underlying 3D object surface of a point cloud. The proposed decoder only uses about 7% parameters of a decoder with fully-connected neural networks, yet leads to a more discriminative representation that achieves higher linear SVM classification accuracy than the benchmark. In addition, the proposed decoder structure is shown, in theory, to be a generic architecture that is able to reconstruct an arbitrary point cloud from a 2D grid. Finally, this folding-based decoder is interpretable since the reconstruction could be viewed as a fine granular warping from the 2D grid to the point cloud surface.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro