Formant Estimation and Tracking using Probabilistic Heat-Maps
Formants are the spectral maxima that result from acoustic resonances of the human vocal tract, and their accurate estimation is among the most fundamental speech processing problems. Recent work has been shown that those frequencies can accurately be estimated using deep learning techniques. However, when presented with a speech from a different domain than that in which they have been trained on, these methods exhibit a decline in performance, limiting their usage as generic tools. The contribution of this paper is to propose a new network architecture that performs well on a variety of different speaker and speech domains. Our proposed model is composed of a shared encoder that gets as input a spectrogram and outputs a domain-invariant representation. Then, multiple decoders further process this representation, each responsible for predicting a different formant while considering the lower formant predictions. An advantage of our model is that it is based on heatmaps that generate a probability distribution over formant predictions. Results suggest that our proposed model better represents the signal over various domains and leads to better formant frequency tracking and estimation.
READ FULL TEXT