Fractional Pseudorandom Generators from Any Fourier Level

08/04/2020
by   Eshan Chattopadhyay, et al.
0

We prove new results on the polarizing random walk framework introduced in recent works of Chattopadhyay et al. [CHHL19,CHLT19] that exploit L_1 Fourier tail bounds for classes of Boolean functions to construct pseudorandom generators (PRGs). We show that given a bound on the k-th level of the Fourier spectrum, one can construct a PRG with a seed length whose quality scales with k. This interpolates previous works, which either require Fourier bounds on all levels [CHHL19], or have polynomial dependence on the error parameter in the seed length [CHLT10], and thus answers an open question in [CHLT19]. As an example, we show that for polynomial error, Fourier bounds on the first O(log n) levels is sufficient to recover the seed length in [CHHL19], which requires bounds on the entire tail. We obtain our results by an alternate analysis of fractional PRGs using Taylor's theorem and bounding the degree-k Lagrange remainder term using multilinearity and random restrictions. Interestingly, our analysis relies only on the level-k unsigned Fourier sum, which is potentially a much smaller quantity than the L_1 notion in previous works. By generalizing a connection established in [CHH+20], we give a new reduction from constructing PRGs to proving correlation bounds. Finally, using these improvements we show how to obtain a PRG for 𝔽_2 polynomials with seed length close to the state-of-the-art construction due to Viola [Vio09], which was not known to be possible using this framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro