Frustratingly Easy Noise-aware Training of Acoustic Models

11/04/2020
by   Desh Raj, et al.
0

Environmental noises and reverberation have a detrimental effect on the performance of automatic speech recognition (ASR) systems. Multi-condition training of neural network-based acoustic models is used to deal with this problem, but it requires many-folds data augmentation, resulting in increased training time. In this paper, we propose utterance-level noise vectors for noise-aware training of acoustic models in hybrid ASR. Our noise vectors are obtained by combining the means of speech frames and silence frames in the utterance, where the speech/silence labels may be obtained from a GMM-HMM model trained for ASR alignments, such that no extra computation is required beyond averaging of feature vectors. We show through experiments on AMI and Aurora-4 that this simple adaptation technique can result in 6-7 improvement. We implement several embedding-based adaptation baselines proposed in literature, and show that our method outperforms them on both the datasets. Finally, we extend our method to the online ASR setting by using frame-level maximum likelihood for the mean estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro