Fusing Heterogeneous Factors with Triaffine Mechanism for Nested Named Entity Recognition

10/14/2021
by   Zheng Yuan, et al.
0

Nested entities are observed in many domains due to their compositionality, which cannot be easily recognized by the widely-used sequence labeling framework. A natural solution is to treat the task as a span classification problem. To increase performance on span representation and classification, it is crucial to effectively integrate all useful information of different formats, which we refer to heterogeneous factors including tokens, labels, boundaries, and related spans. To fuse these heterogeneous factors, we propose a novel triaffine mechanism including triaffine attention and scoring, which interacts with multiple factors in both the stages of representation and classification. Experiments results show that our proposed method achieves the state-of-the-art F1 scores on four nested NER datasets: ACE2004, ACE2005, GENIA, and KBP2017.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset