GAN-based federated learning for label protection in binary classification
As an emerging technique, vertical federated learning collaborates with different data sources to jointly train a machine learning model without data exchange. However, federated learning is computationally expensive and inefficient in modeling due to complex encryption algorithms and secure computation protocols. Split learning offers an alternative solution to circumvent these challenges. Despite this, vanilla split learning still suffers privacy leakage. Here, we propose the Generative Adversarial Federated Model (GAFM), which integrates the vanilla split learning framework with the Generative Adversarial Network (GAN) for protection against label leakage from gradients in binary classification tasks. We compare our proposal to existing models, including Marvell, Max Norm, and SplitNN, on three publicly available datasets, where GAFM shows significant improvement regarding the trade-off between classification accuracy and label privacy protection. We also provide heuristic justification for why GAFM can improve over baselines and demonstrate that GAFM offers label protection through gradient perturbation compared to SplitNN.
READ FULL TEXT