GANzilla: User-Driven Direction Discovery in Generative Adversarial Networks
Generative Adversarial Network (GAN) is widely adopted in numerous application areas, such as data preprocessing, image editing, and creativity support. However, GAN's 'black box' nature prevents non-expert users from controlling what data a model generates, spawning a plethora of prior work that focused on algorithm-driven approaches to extract editing directions to control GAN. Complementarily, we propose a GANzilla: a user-driven tool that empowers a user with the classic scatter/gather technique to iteratively discover directions to meet their editing goals. In a study with 12 participants, GANzilla users were able to discover directions that (i) edited images to match provided examples (closed-ended tasks) and that (ii) met a high-level goal, e.g., making the face happier, while showing diversity across individuals (open-ended tasks).
READ FULL TEXT