General Loss Functions Lead to (Approximate) Interpolation in High Dimensions

03/13/2023
by   Kuo-Wei Lai, et al.
0

We provide a unified framework, applicable to a general family of convex losses and across binary and multiclass settings in the overparameterized regime, to approximately characterize the implicit bias of gradient descent in closed form. Specifically, we show that the implicit bias is approximated (but not exactly equal to) the minimum-norm interpolation in high dimensions, which arises from training on the squared loss. In contrast to prior work which was tailored to exponentially-tailed losses and used the intermediate support-vector-machine formulation, our framework directly builds on the primal-dual analysis of Ji and Telgarsky (2021), allowing us to provide new approximate equivalences for general convex losses through a novel sensitivity analysis. Our framework also recovers existing exact equivalence results for exponentially-tailed losses across binary and multiclass settings. Finally, we provide evidence for the tightness of our techniques, which we use to demonstrate the effect of certain loss functions designed for out-of-distribution problems on the closed-form solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset