Generalised Impedance Model of Wireless Links Assisted by Reconfigurable Intelligent Surfaces
We devise an end-to-end communication channel model that describes the performance of RIS-assisted MIMO wireless links. The model borrows the impedance (interaction) matrix formalism from the Method of Moments and provides a physics-based communication model. In configurations where the transmit and receive antenna arrays are distant from the RIS beyond a wavelength, a reduced model provides accurate results for arbitrary RIS unit cell geometry. Importantly, the simplified model configures as a cascaded channel transfer matrix whose mathematical structure is compliant with widely accepted, but less accurate, system level RIS models. A numerical validation of the communication model is presented for the design of binary RIS structures with scatterers of canonical geometry. Attained results are consistent with path-loss models: For obstructed line-of-sight between transmitter and receiver, the channel capacity of the (optimised) RIS-assisted link scales as R^-2, with R RIS-receiver distance at fixed transmitter position. Our results shows that the applicability of communication models based on mutual impedance matrices is not restricted to canonical minimum scattering RIS unit cells.
READ FULL TEXT