Generalised Zero-Shot Learning with Domain Classification in a Joint Semantic and Visual Space

by   Rafael Felix, et al.

Generalised zero-shot learning (GZSL) is a classification problem where the learning stage relies on a set of seen visual classes and the inference stage aims to identify both the seen visual classes and a new set of unseen visual classes. Critically, both the learning and inference stages can leverage a semantic representation that is available for the seen and unseen classes. Most state-of-the-art GZSL approaches rely on a mapping between latent visual and semantic spaces without considering if a particular sample belongs to the set of seen or unseen classes. In this paper, we propose a novel GZSL method that learns a joint latent representation that combines both visual and semantic information. This mitigates the need for learning a mapping between the two spaces. Our method also introduces a domain classification that estimates whether a sample belongs to a seen or an unseen class. Our classifier then combines a class discriminator with this domain classifier with the goal of reducing the natural bias that GZSL approaches have toward the seen classes. Experiments show that our method achieves state-of-the-art results in terms of harmonic mean, the area under the seen and unseen curve and unseen classification accuracy on public GZSL benchmark data sets. Our code will be available upon acceptance of this paper.


Generalised Zero-Shot Learning with a Classifier Ensemble over Multi-Modal Embedding Spaces

Generalised zero-shot learning (GZSL) methods aim to classify previously...

Isometric Propagation Network for Generalized Zero-shot Learning

Zero-shot learning (ZSL) aims to classify images of an unseen class only...

Learning Semantic Ambiguities for Zero-Shot Learning

Zero-shot learning (ZSL) aims at recognizing classes for which no visual...

Classifier Crafting: Turn Your ConvNet into a Zero-Shot Learner!

In Zero-shot learning (ZSL), we classify unseen categories using textual...

Domain-aware Visual Bias Eliminating for Generalized Zero-Shot Learning

Recent methods focus on learning a unified semantic-aligned visual repre...

Multi-modal Ensemble Classification for Generalized Zero Shot Learning

Generalized zero shot learning (GZSL) is defined by a training process c...

Semantically Aligned Bias Reducing Zero Shot Learning

Zero shot learning (ZSL) aims to recognize unseen classes by exploiting ...

Please sign up or login with your details

Forgot password? Click here to reset