Generalization Bounds for Set-to-Set Matching with Negative Sampling

02/25/2023
by   Masanari Kimura, et al.
0

The problem of matching two sets of multiple elements, namely set-to-set matching, has received a great deal of attention in recent years. In particular, it has been reported that good experimental results can be obtained by preparing a neural network as a matching function, especially in complex cases where, for example, each element of the set is an image. However, theoretical analysis of set-to-set matching with such black-box functions is lacking. This paper aims to perform a generalization error analysis in set-to-set matching to reveal the behavior of the model in that task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro