GeoGPT: Understanding and Processing Geospatial Tasks through An Autonomous GPT
Decision-makers in GIS need to combine a series of spatial algorithms and operations to solve geospatial tasks. For example, in the task of facility siting, the Buffer tool is usually first used to locate areas close or away from some specific entities; then, the Intersect or Erase tool is used to select candidate areas satisfied multiple requirements. Though professionals can easily understand and solve these geospatial tasks by sequentially utilizing relevant tools, it is difficult for non-professionals to handle these problems. Recently, Generative Pre-trained Transformer (e.g., ChatGPT) presents strong performance in semantic understanding and reasoning. Especially, AutoGPT can further extend the capabilities of large language models (LLMs) by automatically reasoning and calling externally defined tools. Inspired by these studies, we attempt to lower the threshold of non-professional users to solve geospatial tasks by integrating the semantic understanding ability inherent in LLMs with mature tools within the GIS community. Specifically, we develop a new framework called GeoGPT that can conduct geospatial data collection, processing, and analysis in an autonomous manner with the instruction of only natural language. In other words, GeoGPT is used to understand the demands of non-professional users merely based on input natural language descriptions, and then think, plan, and execute defined GIS tools to output final effective results. Several cases including geospatial data crawling, spatial query, facility siting, and mapping validate the effectiveness of our framework. Though limited cases are presented in this paper, GeoGPT can be further extended to various tasks by equipping with more GIS tools, and we think the paradigm of "foundational plus professional" implied in GeoGPT provides an effective way to develop next-generation GIS in this era of large foundation models.
READ FULL TEXT