GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight Gated Injection Method

10/23/2020
by   Nicole Peinelt, et al.
0

Large pre-trained language models such as BERT have been the driving force behind recent improvements across many NLP tasks. However, BERT is only trained to predict missing words - either behind masks or in the next sentence - and has no knowledge of lexical, syntactic or semantic information beyond what it picks up through unsupervised pre-training. We propose a novel method to explicitly inject linguistic knowledge in the form of word embeddings into any layer of a pre-trained BERT. Our performance improvements on multiple semantic similarity datasets when injecting dependency-based and counter-fitted embeddings indicate that such information is beneficial and currently missing from the original model. Our qualitative analysis shows that counter-fitted embedding injection particularly helps with cases involving synonym pairs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro