Global Flood Prediction: a Multimodal Machine Learning Approach

01/29/2023
by   Cynthia Zeng, et al.
0

Flooding is one of the most destructive and costly natural disasters, and climate changes would further increase risks globally. This work presents a novel multimodal machine learning approach for multi-year global flood risk prediction, combining geographical information and historical natural disaster dataset. Our multimodal framework employs state-of-the-art processing techniques to extract embeddings from each data modality, including text-based geographical data and tabular-based time-series data. Experiments demonstrate that a multimodal approach, that is combining text and statistical data, outperforms a single-modality approach. Our most advanced architecture, employing embeddings extracted using transfer learning upon DistilBert model, achieves 75%-77% ROCAUC score in predicting the next 1-5 year flooding event in historically flooded locations. This work demonstrates the potentials of using machine learning for long-term planning in natural disaster management.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro