Goal-Oriented A-Posteriori Estimation of Model Error as an Aid to Parameter Estimation

05/30/2022
by   Prashant K. Jha, et al.
0

In this work, a Bayesian model calibration framework is presented that utilizes goal-oriented a-posterior error estimates in quantities of interest (QoIs) for classes of high-fidelity models characterized by PDEs. It is shown that for a large class of computational models, it is possible to develop a computationally inexpensive procedure for calibrating parameters of high-fidelity models of physical events when the parameters of low-fidelity (surrogate) models are known with acceptable accuracy. The main ingredients in the proposed model calibration scheme are goal-oriented a-posteriori estimates of error in QoIs computed using a so-called lower fidelity model compared to those of an uncalibrated higher fidelity model. The estimates of error in QoIs are used to define likelihood functions in Bayesian inversion analysis. A standard Bayesian approach is employed to compute the posterior distribution of model parameters of high-fidelity models. As applications, parameters in a quasi-linear second-order elliptic boundary-value problem (BVP) are calibrated using a second-order linear elliptic BVP. In a second application, parameters of a tumor growth model involving nonlinear time-dependent PDEs are calibrated using a lower fidelity linear tumor growth model with known parameter values.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro